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dans le cas oO l 'un des cristaux a une 6paisseur faible 
par rapport  h l'autre. I1 est possible 6galement de 
calculer le contraste de franges de moir6 obtenus . 
avec deux cristaux d'6paisseur quelconque. La m6thode 
de calcul dans ce cas serait la m~me que celle employ6e * 
dans l'article pr6c6dent pour le calcul du contraste 
d'une faute d'empilement. 
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The Cowley-Moodie slice formulation of n-beam electron diffraction has been manipulated to give a 
set of linear first order differential equations, one per beam, the coefficients of which are proportional 
to the Fourier coefficients of the crystal potential. The analog solution of these equations gives a vivid 
demonstration of the interacting processes involved in dynamic scattering and, with modern analog 
computers, allows an extremely rapid solution, at least two orders of magnitude faster than comparable 
digital computer calculations. The advantages and disadvantages of the method are discussed and practi- 
cal example calculations and applications described. 

1. Introduction 

The use of analogies as an aid to the quantitative or 
qualitative interpretation of dynamic diffraction theory 
was clearly envisaged by Ewald, when he described the 
'Pendell~Ssung' solution, and was freely invoked by 
Brillouin (1946). In addition, Heidenreich (1950) con- 
structed a useful analogy by utilizing the correspon- 
dence between the dispersion equations and those of a 
suitable electrical network. However, since the dis- 
persion equations are the result of formal mathemat- 
ics invoked solely for the purpose of calculation and 

are not essential to the solution of the diffraction prob- 
lem, the analogy is of limited value and only indirectly 
connected with experimentally observed quantities. 

The direct solution of the differential equation for- 
mulation of the diffraction theory (Tournarie, 1961; 
Takagi, 1962) has the advantage, in common with the 
multislice calculation of Goodman & Moodie (1968), 
of avoiding the unnecessary solution of the dispersion 
equations, the wave functions external to the crystal 
being calculated directly. Consequently the electrical 
network resulting from programming an electronic 
analog computer to solve these differential equations 
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offers an immediate and a powerful analogy to the 
process of dynamic electron diffraction. 

In this paper the advantages, limitations and uses of 
analog methods will be discussed with reference to 
particular calculations, and some results compared with 
equivalent digital calculations. Practical details for 
implementing the technique are described. A deriva- 
tion of the differential equation form of the theory 
from the slice formulation of Cowley & Moodie is 
given as it demonstrates the theoretical connexion 
between the digital multislice and analog methods of 
calculation. 

I 
U~,.~ an.h [ 1 r - ~  

; 11 I oo 

a I 
lUh ~ l  ~lh I ~ ~ U ~ l i 

, " ~ , ~ . . b , - h  I I I I  

I 
Fig. 1. A beam unit. The basic assemblage of computing 

components required per beam is shown on the right of 
the dotted line in standard analog computer programming 
symbols (Korn & Korn, 1964, p.6). The inputs from other 
beams enter from the left and voltages representing the real 
and imaginary parts of the nth beam amplitude are available 
on the right. 
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Fig.2. Correspondence between the diffraction pattern and 
computer connexions. (a) The single scattering processes 
contributing to a beam n are represented by vectors in the 
diffraction pattern. (b) A symbolic representation of the 
corresponding connexions between beam units. The broad 
arrows symbolize two wires in centrosymmetric and four 
in non-centrosymmetric cases. The potentiometers are 
similarly symbolic. 

2. T h e o r y  

A formal derivation of a differential equation formula- 
tion of the n-beam diffraction problem can be made by 
starting from the Cowley-Moodie recurrence relation 
(Cowley & Moodie, 1957). This relation describes the 
wave function ~'m(X) at the exit face of a thin arbitrary 
slice of crystalt in terms of the wave function at the 
exit face of the previous slice ~/m-l(x), a propagation 
function p(x) describing the phase changes due to pro- 
pagation and a function qra(X) representing the phase 
changes resulting from the potential of the ruth slice 
projected on to a two-dimensional sheet at the centre 
of the slice. Thus 

g/re(x) = [~um-~(x) * p(x)], qm(x). (1) 

It has been proved by A. F. Moodie (private com- 
munication) that the separation of phase changes due 
to propagation from those due to interaction implied 
by (1) gives an exact result with an appropriate limiting 
process when the crystal is divided into an infinite 
number of planes at infinitely small separation. 

It is convenient to work from the Fourier transform 
of (1), written neglecting constant terms as 

U (O) 
=[Um-l(O) . exp (-2ikAzOZ)] • o~'{qm(x)} , (2) 

where Urn(O) is the transform of grin(x), the exponen- 
tial term is the transform of the propagation function 
for the case of normal incidence,:]: Az is the distance 
between slice centres, 20 the angle between the inci- 
dent wave and the direction of observation and k the 
magnitude of the incident wave vector within the cry- 
stal corrected for relativistic effects. This is the equa- 
tion evaluated repetitively in the digital multislice 
method of Goodman & Moodie. 

For perfect crystal diffraction at discrete angles On, 
the last term in (2) can be written as 

o~'{qra(X) } =fi(O) + iaAzEm(O) ,S ~(O- On) 
n 

o-2Az2 
2t [Era(0) S a(O-On) • E,,(0) ( 0 - 0 n ) ] + . . .  

n n 

since qm(x)=exp {io'Azq~(x, zm)} (Cowley & Moodie, 
1957). Here L" f i(0- On) represents an infinite set of delta 

n 

k 2 
functions, cr-  2W {1 +(1 _/72)1/2} ,{} where W is the 

? For convenience only two dimensions will be considered, 
x being the lateral coordinate and z the coordinate perpendicular 
to the slice. The extension of the results to three dimensions 
is straightforward. 

In electron diffraction it is sufficient to make a small 
angle approximation when constructing p(x). We have used 

1 p(x) = ~ exp (ikx2/2Az). 

§ The factor 2/{1+(1-82)1/2} is the relativistic correction 
for mass; see Fujiwara (1961), Goodman & Lehmpfuhl (1967). 
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accelerating voltage and Era(O) is the Fourier transform 
of ~o(X, Zm), the one-dimensional distribution of poten- 
tial in a slice centred at Zm, given by 

Era(O) = ~o(x, zm) exp (2ikOx) . dx . 
- - o o  

If the incident wave can be represented as a delta 
function and qm(x) is periodic, the recurrence relation 
(2) shows that the functions Urn(O) and Um-l(O) will 
have non-zero values only in the discrete directions On 
and thus can be represented by column vectors with 
components Urn(On). A typical element of (2) is then 

Urn(On) 
=[gm-a(On) . exp (-2ikAz02)] 

* [fi(0n) + iaAzEm(On) + . . .  ] 

where Era(On) = S, E(On, l) exp (2rcizml/e), E(On, l) being 
l 

the Fourier coefficients of the crystal potential. 
Taking sufficient terms to allow evaluation of the 

convolution correct to the first order in Az gives 

v , , , ( o , , )  = z - 2ikZzO } 
h 

x {5(On - Oh) + iaAzEm(On - Oh) } 

= Um-l(On)- 2ikAzO~,Um-x(On) 

+ iaAz Z Era(On- On). Um-l(On) + . . .  (3) 
h 

By Taylor's theorem 

d V r a - l ( O n )  
U r n ( O n )  = U m - l ( O n )  dr A z  ~ .+- . . . .  (4) 

Equating coefficients of Az between (3) and (4) results 
in the limit of Az-+O in a set of n simultaneous differen- 
tial equations 

dU(On) 
- 2ikO~U(On) 

dz 
+ ia Z Era(On - On). U(Oh). (5) 

h 

Extension of the arguments to the three-dimensional 
case leads to the same equations, the indices n and h 
being taken to include all desired reflexions in the zero 
layer. The effects of upper layer reflexions enter through 
the term Era. 

The equations used for analog computation were 
generalized to include cases other than normal inci- 
dence by replacing 2kO~ by -2zCffn where fin is the exci- 
tation error for an Ewald sphere of radius 1/2. With 
this modification and a simplified notation equation 
(5) becomes 

/ dz - 0 + icr Z Eo-n Un 
• . h 

! 

don  
= i2rc (nUn+iaZEn-nUn  ] 

dz h J 

(6) 

Apart from a small angular approximation this 
equation is identical with that given by Tournarie 
(1961) for the case of negligible backscattering and is 
contained in more general differential equations due to 
Takagi (1962) and Howie & Whelan (1961) which in- 
clude to a greater or lesser extent the influences of 
distortions within the crystal. 

3. Analog computation 

The programming of an electronic analog computer 
to solve the differential equations just described results 
in a computational network whose analytical properties 

u° ~ 0 ag 
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Fig. 3. Two-beam centrosymmetr ic  case. Excitation error zero. 
An initial condi t ion is shown on the upper  integrator only, 
representing the incident beam with phase angle zero. 
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Fig.4. Two-beam, excitation error connexions shown with 
dot ted lines• 
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will be discussed in §4. For the present attention will 
be focused on constructing the network in a form 
which has been found suitable for making successful 
numerical computations with up to seven beams. 

Programming 

The representation of complex variables on con- 
ventional analog computers is best made with their 
real and imaginary components. It is then necessary to 
make the substitutions Un = Un + iu~ and aEn = an + ibn 
in (6) and split each equation into real and imaginary 
parts before computation is possible. This results in 
pairs of equations of the following form 

dun 
dz - 2rc(,,u i -  Z (a,,_hu~ + b,_huh) 

h 

du ~ _ 2rc(,,u,, + Z ( a , _ h u  h - b , _ h u ~ )  
dz I, 

, ( 7 )  

it being noted that the effect of upper layer interactions 
has been omitted. Taking the independent computer 
variable time to represent z, the basic circuit for solving 
(7) is shown in Fig. 1,t one such circuit being required 
for each beam taken into consideration. It is convenient 
to refer to the portion of the circuit on the right of the 
dotted line as a beam unit as it includes all the 
components required per beam apart from those 

t The effect of sign reversal which occurs with conventional 
electronic integrators has been allowed for in labelling all 
circuit diagrams in this paper. 
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Fig. 5. The two-beam case with absorption. No excitation error. 
The potentiometers for bo simulate the angular independent 
absorption coefficient as they are equivalent to leaking in- 
tegrating capacitors. 

necessary for calculating intensity. The upper and lower 
integrators in Fig. 1 compute the real and imaginary 
components of the diffracted wave amplitude respec- 
tively and are followed by two inverters generating 
their negatives. The double pole switch, which facili- 
tates the selection of the sign of the excitation error and 
the associated potentiometers are redundant in the case 
of the unit representing the central beam. The poten- 
tiometers to the left of the integrators are used to mul- 
tiply the incoming amplitudes from other beams, h, by 
the real and imaginary components of the scattering 
probabilities an-h and bn-h. The interconnexions be- 
tween the beam units via these potentiometers are rea- 
dily deduced with the aid of two simple rules: 

1. An integrator computing the real component can 
only have inputs which are imaginary, (viz. uhbn-h or 
U~an-h) and vice versa. 

2. The coefficient potentiometer multiplying an in- 
coming amplitude uh must be set to a value corre- 
sponding to the probability that electrons in the beam 
uh will be directly scattered into the direction of the 
beam n being considered. 

This probability is ~rEn-h per unit length in the direc- 
tion of the beam. The combinations of uh and En-h 
required are conveniently determined from a map of 
reciprocal space showing all reflexions included in the 
calculation, as the connexions between the beam units 
of the analog computer have the same topology as the 
vectors between the reciprocal lattice points which re- 
present the scattering of electrons from one beam to 
another. This is illustrated in Fig. 2. All connexions in- 
volving a0 may be omitted, the diffraction pattern 
being independent of the real part of the zero order 
Fourier coefficient of the potential E0. 

As a result of the foregoing it is possible to program 
the analog computer directly from a diffraction pattern 
without reference to the differential equations. 

Scaling 

Amplitude scaling is straightforward since the scat- 
tering process is interpreted in terms of probabilities. 
Since as0kev~0"001 and for E = 1 0  volts the coeffi- 
cients a are of the order of 0.01, a scale factor of s =  
100 .A..sec -1 is often convenient, as it results in the 
Fourier coefficient potentiometers being set to s a E =  1. 
The computer then runs so that a second of real time 
corresponds to 100 ]~ of crystal thickness. With s as 
100 a sensible scaling of the excitation error potentio- 
meters for typical values of 2n~ will result if they are 
connected to × 10 inputs. For high-speed computation 
s can be as great as 106/~.sec -1. 

Initial conditions 

Integrator initial conditions corresponding to a 
plane wave incident on the crystal are simply Uo= 1, 
Un = 0, n ¢ 0 and u~ = 0. Otherwise the calculation may 
be commenced from a point within the crystal by 
using a predetermined set of self consistent amplitudes 
as integrator initial conditions. 
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4. Properties of the analog network 

In the previous section the programming of an analog 
computer for practical calculation was treated and a 
limited use made of the analogy between the diffraction 
pattern and the network of computing components. 
The analogous properties of the network may be em- 
ployed more widely to explore the effects of excitation 
error, phases and symmetry in cases of three or more 
beams. The facility with which the network can be 
used for such purposes is readily understood when it is 
recognized that it is in fact a diagrammatic picture of 
an operator representing the diffraction process. This 
operator acts on the incoming wave (analog computer 
initial conditions) to produce the diffraction pattern 
and so contains all the influences of wavelength, crystal 
and angle necessary to the problem. 

The use of the analog network as a conceptual aid 
in dynamic diffraction is best illustrated by the fol- 
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Fig.7. Three-beam case as shown in Fig.6 except that the 
g - h  coupling term is allowed, the dotted line connexions 
being introduced as a result. 
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Fig.6. Three-beam case. No excitation errors. The allowed 
coupling terms are shown in the upper diagram and the 
corresponding analog circuit below. 

lowing descriptions of excitation error, phase and ab- 
sorption effects in two- and three-beam cases. 

T w o - b e a m  case 

The beam unit arrangement of programming sym- 
bols has been found convenient for making practical 
calculations on an analog computer. However, for the 
present purposes another arrangement, taking advan- 
tage of the symmetry of the operator, is more readily 
comprehended. The two beam centrosymmetric case 
with no absorption or excitation error is shown in this 
latter arrangement in Fig. 3, the circuit being con- 
structed using the rules set out in § 3. It will be observed 
that the two circuits which comprise this Figure both 
represent the equation of a simple pendulum written 
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in the simultaneous equation form 

duo agu~ • du~ 
dt - ' dt  =aguo . 

If the phase of the incident wave is taken to be zero, 
oscillations will occur only in the upper circuit, the 
initial conditions in the lower circuit being zero. The 
addition of an excitation error introduces connexions 
between the upper and lower loops which increases the 
gain around the upper loop, and hence the frequency 
of oscillation, as shown in Fig. 4. 

One would expect that the introduction of leaking 
integrator capacitors would produce an absorption 
like effect. Reference to equation (7) confirms that a 
calculation including a constant absorbing potential 
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Fig. 8. Three-beam case with one positive excitation error, all 
coefficients positive. The open circle in the coupling diagram 
represents a non-zero excitation error. 

o 

Fig.9. Three-beam case, excitation error and an now negative. 
The connexions are identical with those in Fig. 8. 

(bo>0, bg=0) requires resistors in parallel with all 
integrating capacitors as shown in Fig. 5, and that 
the absorption acts equally on all beams in the crystal 
in damping the solution. Structure in the absorbing 
potential (bg ¢ 0) is simulated by the dotted connexions 
between the upper and lower computational loops in 
Fig. 5, exciting oscillations in the lower loop. These 
connexions yield strong positive feedback between the 
integrators 1 and 2 and between 3 and 4. However this 
is directly offset by the negative feedback due to the 
zero order coefficient of the absorbing potential. A 
balance between these opposing connexions is main- 
tained provided bo > bg, that is, so long as the absorbing 
potential remains positive. For b o < b g  the solution 
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diverges, corresponding to electrons being created in 
the crystal. 

For bo=bg a damped oscillation occurs, the inten- 
sity of both beams tending to a constant value of 0.25 
for large z, the theoretically maximum possible Borr- 
mann effect for zero excitation error. 

Three-beam case 

The diagram representing the two-beam theory in 
Fig. 3 can be extended to give some insight into the 
effects of a third beam, and by exploiting the symmetry 
of the diagrams the equivalence of say, excitation error 
and Fourier coefficient may be demonstrated in certain 
instances. 

Initially, consider the case where the Bragg condi- 
tion for two strong beams g and h is satisfied and no 
coupling term, g - h ,  exists. The coupling terms for 
the strong beams are both of positive sign. The corre- 
sponding analog circuit may be immediately drawn 
utilizing the rules given earlier and is shown in Fig. 6. 
From this circuit, it is clear that the solution will be of 
sinusoidal form, since all the components for the addi- 
tional beam, g, are in parallel with those for the other 
beam, h, and both the integrators for these beams have 
the same initial conditions. The paralleling of com- 
ponents in the oscillating loops results in increased 
loop gain and a shortened extinction length. Inspec- 
tion of the circuit shows this to be true even if the signs 
of the two coupling terms differ. 

If  the coupling term g - h  is now no longer zero, con- 
nexions between the upper and lower circuits of Fig. 6 
are introduced as shown by the dotted lines in Fig. 7 
for ag-n positive. By tracing out the additional loops 
it is found that similar components are paralleled, 
independent of the signs of the coupling terms, and 
consequently the extinction length will again be 
shortened. 

If the sign of the coupling term ag-n becomes nega- 
tive the dotted line connexions in Fig. 7 are each 
switched to the opposite sides of the inverters at their 
input ends. The resulting diagram is simply that of 
Fig. 7 turned up side down. Thus, since the upper and 
lower portions of the diagram are identical and the 
initial conditions may be applied to either the Uo or uto 
integrators, the computed intensities are independent 
of the sign of ag-h. Similar arguments may be used to 
show that the signs of the g and h terms are likewise 
unimportant and consequently no phase information is 
available when both excitation errors are zero. This 
result could be obtained in principle from the analytic 
expression for the dynamic theory of Cowley & 
Moodie (1962). 

The introduction of an excitation error allows con- 
clusions to be drawn concerning t-he phase of the three 
coupling terms as demonstrated by Kambe and Miyake 
(Kambe, 1954, 1957). This result may be obtained by 
an inspection of the circuit diagrams for various com- 
binations of the signs of the three coupling terms and 
the excitation error. As an example, consider the cir- 

cuit shown in Fig. 8 for the case where all four signs 
are positive. If, upon changing one or more signs the 
circuit remains unchanged or cannot be transformed by 
a simple inversion or relabelling back to the original, 
the diffracted intensities will also remain unchanged 
and no phase information can be obtained. For ex- 
ample changing the sign of the excitation error and 
an simultaneously is equivalent to relabelling the cir- 
cuit as shown in Fig. 9. Consequently the diffracted 
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Fig. 10. (a) The scattering paths between two sharp beams 
o and g and their plasmon-excited beams h and j. (b) The 
corresponding computing circuit for all excitation errors 
zero. 

h 

Fig. 11. Intensity versus thickness curves for the four beams 
computed by the circuit of Fig. 10(b) with Eg=2 volts, 
En =0"1 volt. The transfer of energy from the sharp to the 
diffuse beams is clearly apparent. 
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intensities will remain unchanged. Likewise, changing 
the sign of ~g and an-g simultaneously is equivalent to 
turning the circuit of Fig. 8 up side down and again 
no change results. Similar arguments to these show no 
change occurs when any two signs are simultaneously 
reversed. However, changing any one sign gives a new 
topology to the circuit which results in a different inten- 
sity being obtained. This new topology is maintained 
if subsequently two signs are changed simultaneously. 
The calculated intensity therefore depends upon the 
sign of the product ag. an. an-g. Ca and since the 
sign of cg can be measured experimentally the relative 
signs of the three Fourier coefficients may be obtained 
provided a sufficient number of comparisons are pos- 
sible. 

Plasmon diffuse scattering 
The possibility of making qualitative calculations 

with a limited number of components is best illustrated 
by the following example in which the effect of diffuse 
scattering due to plasmon excitation in a two-beam 
situation was examined. This has been treated, for 
example, by Howie (1963). In all, four beams with zero 

(a) 

f 
f 

(b) 

Fig. 12. An illustration of the effect of a mirror plane on the 
number  of coefficient potentiometers required. If the coef- 
ficients n - h  and g - h  are equal and of the same sign, a 
mirror plane (dotted line) exists and circuit (b) can replace 
the general circuit (a). 

0"05 400 , . , 

10 X000/', ,  ~ /%, / ~  ',~,. 

[\/ \ /  \ L V  
0'05-I~. 200 

1000 2000 ,4 

Fig. 13. Comparison of a one-dimensional four-beam analog 
computat ion (full lines) with a 14-beam digital computat ion 
(dotted lines). Conditions: E200=7"065 volts, E400=2"939 
volts, E600 = 1.751 volts, (200 = 0, (400 = ~o0 = - 0.00928 A- l ,  
a = 0 . 9 9 3 6 x  10-3 V-1 A- l ,  2=0.04092 A, W=83.13 kV. 
Potential for digital computat ion calculated with 13 Fourier 
coefficients (HF scattering curves) and Br~g = Bo = 0.26A2. 

excitation error were included, two sharp, o and g and 
two diffuse, h and j, the permissible scattering paths 
between them being shown in Fig. 10(a). The rapid 
fall off of the plasmon scattering curve allows the 
sharp to diffuse processes o - j  and h - g ,  and their in- 
verses, to be omitted. Because the terms g - h ,  j - o ,  
their inverses and all the ~'s were zero and an even 
number of non-zero coupling terms were required, the 
computer circuit separated into two symmetric parts 
similar to those described earlier. Takingthe phase of the 
central beam at the entrance face to be zero meant only 
that part of the circuit containing the integrator for u0 
was required, and this is shown in Fig. 10(b). The lower 
loop in the circuit representing the sharp beams initi- 
ally contains all the energy which oscillates in a stan- 
dard two beam fashion. However the upper loop re- 
presenting two diffuse beams gradually extracts this 
energy via the sharp-diffuse connexions o -  h and g - j ,  
resulting in the curves in Fig. 11. It will be appreciated 
that complete coherence between the sharp and diffuse 
waves is implied and consequently the calculation will 
be in error at large thickness. 

The ~ pendulum 
The connexions introduced by a finite excitation 

error immediately suggest the manner in which this 
parameter affects the intensity of a beam. In Fig. 1 the 
connexions for ~ place two integrators and one of the 
two inverters in a closed loop which represents a 
pendulum of resonant frequency s~ cps. The incoming 
waves act as forcing functions to this pendulum which 
will respond only slightly when s~ is large compared 
with the frequency of the thickness fringes. Alternative- 
ly, small values of ~ will act mainly in shifting the 
phase of the incoming waves and have little effect on 
their amplitude. 

5. Limitations and applications 

In electron diffraction calculations a striking property 
of the analog computer is its speed relative to that of a 
digital machine. For example a four beam computa- 
tion which took 2 minutes by digital methods was 
completed in 25 ms (scale factor s=  105 .A_.sec -1) using 
a high speed analog computer with a computing 
bandwidth of > 50 kc. This advantage is offset by the 
limited capacity of the analog computer, the maximum 
size of the calculation will be determined by the number 
of coefficient potentiometers available and the facility 
with which they can be set. Generally commercial 
computers have a more than adequate supply of inte- 
grators and inverters. For n beams the maximum 
number of potentiometers required assuming all pos- 
sible interactions and excitation errors are included is 
2n 2 - 2  for a centrosymmetric crystal with no absorp- 
tion and 4n 2 -  2 n - 2  for a non-centrosymmetric crystal 
or when absorption is included. In practice these 
numbers can be reduced, as often symmetry relations 
cause the same product unan-h to occur more than 
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once in equations (7). This is illustrated in Fig. 12 for 
the case of a mirror plane. 

Present experience suggests calculations with 8 to 10 
beams to be the maximum practical size on general 
purpose, 100 amplifier machines. 

Accuracy 
Apart from errors due to the omission of beams, 

machine phase and amplitude errors influence the 
accuracy of analog computations. A qualitative meas- 
ure of the latter errors is possible since the circuit can 
be dissected into loops representing simple harmonic 
oscillators and the errors in such loops have been well 
analysed (e.g. Korn & Korn, 1964, p. 114). However, 
the complexity of loops in the complete circuit makes 
a theoretical estimate of the errors intractable. 

A simple method of estimating machine errors is to 
compare computed results with digital calculations,t 
a technique which will also allow errors due to the 
omission of weak beams to be investigated. The results 
of such a comparison are contained in Figs. 13, 14 and 
15. The example in this case is a four-beam analog 
computation for MgO h00 systematics with the 200 
reflexion exactly satisfied. Various digitally computed 
curves are shown, the first of which was obtained by 
including all the Fourier coefficients necessary for a 
reasonable representation of the one-dimensional 
potential (13 orders). The corresponding multi-slice 
calculation included all possible single scattering inter- 
actions between 14 beams, 4 of which are shown in 
Fig. 13 superimposed on the analog curves. Agree- 
ment in the 200 and 400 reflexions was noticeably im- 
proved in a second digital calculation when the scat- 
tering potential was calculated using only those Fourier 
coefficients that were present in the analog computa- 
tion. The subsequent phase grating and multi-slice cal- 
culations were completed using 14 beams and the re- 
suits are shown in Fig. 14. 

The two digital calculations just described both 
accurately portray diffraction from the respective 
potential models used, since sufficient numbers of 
beams were included to restrict the weak beam ab- 
sorption to less than 0.1% and the convolution test 
of the thin phase grating amplitudes Fh, given by 

h'XF*h". Fh+h, = {10 forf°r h = 0h:/:0 

(Moodie, 1965; Goodman & Moodie, 1968), was cor- 
rect to 1 in 106. This is no longer true if the multi-slice 
calculation is restricted to the 4 beams computed by 
analog means, the weak beam absorption amounting 
to 20% after 2000 A. However, after allowing for this 

t The digital calculation using the multi-slice method of 
Goodman & Moodie (1968) implementing equation (2) can 
be considered accurate to within the limits of error required, 
since the technique is well proven by agreement with experi- 
ment (Goodman & Lehmpfuhl, 1967) and various checks on 
computational accuracy are readily performed at all stages of 
the calculation (Goodman & Moodie, 1968). 

absorption the agreement with the analog curves be- 
comes excellent as shown in Fig. 15. It thus appears 
that within the limits of the example used, the accuracy 
of an analog computation is limited mainly by the 
omission of weak beams and not by machine errors. 

Further applications 
Some applications of the technique have already 

been described in §4. The programming ease, speed 
and versatility of modern analog computers will allow 
others to be readily envisaged and rapidly completed. 
One important modification to the circuit of Fig. 1 
widens the scope of the method to include convergent 
beam patterns and n-beam diffraction from distorted 
crystals. The modification consists in connecting mul- 
tipliers in parallel with the ~ potentiometers to allow 
changes in crystal orientation to be introduced rapidly 
during calculation. 

For convergent beam patterns the computer is run 
repetitively for fixed periods of time (constant thick- 
ness) whilst introducing changes in ~ via the multi- 
pliers during the resetting interval between the com- 
puting periods. The gross tilt of the crystal is defined 

0 ' 0 5  4 0 0  . f~ ~ ,. 

A 00p\ / \  A ,A 
S _.V__ .L/ .... } 

A A A ,A ' , 
' L /  t j 

0.05 -tA ~oo 

1000 2000 ,4 

Fig. 14. Same as Fig. 13 except potential for digital computa- 
tion constructed using only the 200, 400 and 600 Fourier 
coefficients. 

O ' 0 5  . 0 0 4  _ . .  , . . , . . . . . .  

1 "0  

• . 

1 ' 0  ~ 0 0 0  , . - . .  ~ .  ,,#.~., , - . .  / . . .  

tVVV   
0.05 ~ ~ ~ ~ N ~  j ~ ~ : ,  :,~ 

1000 2000 A 

Fig. 15. Same as Fig. 14, except digital multi-slice computed 
with only four beams and normalized before plotting to 
allow for absorption due to the neglected weak beams. 
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in the normal way by the settings of the ( potentio- 
meters and the multipliers are used to give a point to 
point scan across the convergent beam discs. Apart 
from the multipliers very little additional hardware is 
required since for small angles the change in angle AO 
across a disc is linearly related to the change in each 
(n by the relation Afn=(2On/2)AO, where On is the 
Bragg angle. 

The intensities from distorted crystals are given by 
solving equation (45) of Howie & Whelan (1961) re- 
written in the present notation as 

dUn 
dz --2~zi((n+fl'n)Un+itr ~r En_n . Un , (8) 

h 

where fl~ = d[g.  R(z)]/dz and g is the reciprocal lattice 
vector and R(z) the vector describing the displacement 
of the lattice at a depth z. Two function generators 
giving the x and y components of dR/dz are sufficient 
to permit the calculation of fl~, for all n, since 

dRz dRu~ 
fl ' .=lg.I.c. ~ -  + d. dz ] '  

where cn and dn are constants defining the angle be- 
tween g and R. Changing the slope of a ramp function 
generator which feeds the function generators allows 
the depth of the distortion within the crystal to be 
varied with the twist of a knob. 

The n-beam electron microscope image of disloca- 
tions within a crystal can be rapidly obtained by using 
the foregoing technique on analog computers equipped 
with independently switched integrators and control 
logic. 

In conclusion, the analog computer is seen as an 
invaluable adjunct to the digital machine in the field 
of dynamic electron diffraction computation when it is 
sufficient to include the interactions between a few 
strong beams. Additionally the analog circuit offers a 
fresh way of visualizing diffraction problems. 

It is a pleasure to acknowledge the stimulating and 
helpful discussion of P. Goodman and A. F. Moodie 
and their continued interest in the work. The author is 
indebted to A. F. Moodie for acquainting him with the 
arguments in § 2. 

References 

BRILLOUIN, L. (1946). Wave Propagation in Periodic Struc- 
tures. New York: McGraw-Hill. 

COWLEY, J. M. & MOODtE, A. F. (1957). Aeta Cryst. 10, 609. 
COWLEY, J. M. & MOODIE, A. F. (1962). J. Phys. Soc. 

Japan, 17, Supp. B II, 86. 
FUJtWARA, K. (1961). J. Phys. Soc. Japan, 16, 2226. 
GOODMAN, P. & LEO_M~rUHL, G. (1967). Acta Cryst. 22, 14. 
GOODMAN, P. & MOODrE, A. F. (1968). To be published. 
HEIOENREICH, R. D. (1950). Phys. Rev. 77, 271. 
HOWIE, A. (1963). Proc. Roy. Soe. A271, 268. 
HOWIE, A. & WnELAN, M. J. (1961). Proe. Roy. Soe. A263, 

217. 
KAMaE, K. (1954). Aeta Cryst. 7, 777. 
KAMBV., K. (1957). J. Phys. Soc. Japan, 12, 13, 25. 
KORN, G. A. & KORN, T. M. (1964). Electronic Analog and 

Hybrid Computers. New York: McGraw-Hill. 
MOODm, A. F. (1965). Proc. Intern. Conf. Electron Diffrac- 

tion and Crystal Defects, Melbourne, ID-1. 
TAKAGI, S. (1962). Acta Cryst. 15, 1311. 
TOURNARIE, M. (1961). J. Phys. Soc. Japan, 17, Supp. BII, 98. 

Acta Cryst. (1968). A24, 543 

Indexing of X-Ray Powder Patterns. Part L The Theory of the Trielinie Case 
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The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. 

(Received 24 February 1967 and in revised form 18 May 1967) 

In a triclinic system, the squares of reciprocal spacings of any seven linearly independent X-ray powder 
lines which belong to the same lattice fulfill a Diophantine equation containing their Miller indices, 
which involves a 7 x 7 determinant. This can be expanded in minors which are integers. Theory is 
developed which breaks the problem of solving this equation into smaller steps, more easily amenable 
to numerical evaluation. The triclinic case has not yet been tried on a practical example, but the method 
has been already used in practice for systems of higher symmetry, for which the computational labor is 
much reduced. 

Introduction 

It would appear from literature that the indexing prob- 
lem for a triclinic system is very unlikely to succeed in 

* Deceased 4 April 1968. 

practice. Most authors restrict themselves to special 
cases: no arbitrary angles in the unit cell (Hesse, 1948; 
Lipson, 1949; Stosick, 1949), or with unusual classes 
of compounds, such as long-spacing compounds 
(Vand, 1948). The method of Ito (Runge, 1917; Ito, 
1950) attacks the problem from the low symmetry 


